Внедрение новых технологий. Хватит ли воды на всех? Обсуждение проблемы соотношения спроса и предложения в водоснабжении Проекты отраслевых НПА

💖 Нравится? Поделись с друзьями ссылкой

В МТИ разработали робота для поиска утечек в трубах

Cовременные системы водоснабжения теряют в среднем 20% воды из-за утечек. Они не только ухудшают качество водоснабжения, но также могут нанести серьезный ущерб зданиям и дорогам, размывая фундаменты. Системы обнаружения утечек стоят дорого и медленно работают: они плохо справляются там, где установлены трубы из дерева, глины или пластика, из которых состоит большинство систем водоснабжения в мире.

Исследователи (МТИ) пытаются решить эту проблему. По словам ученых, новая система способна быстро и дешево искать даже крошечные утечки, независимо от материала, из которого изготовлены трубы. Разработка и тестирование такой системы заняли девять лет — все это время над ней трудился профессор машиностроения Камаль Юсеф-Туми (Kamal Youcef Toumi) и его команда PipeGuard. Ученые готовы представить результаты своего труда на предстоящей Международной конференции IEEE/RSJ по интеллектуальным роботам и системам (IROS) в сентябре.

Летом 2017 года команда проводит испытания на 12-дюймовых бетонных водораспределительных трубах в городе Монтеррей, Мексика. В этом городе администрация разрешила провести испытания не случайно - каждый год Монтеррей теряет около 40% воды из-за утечек, а ущерб в виде упущенной выгоды оценивают в примерно 80 миллионов долларов. Вместе с этим утечки приводят к общему загрязнению воды, поскольку утекшая вода иногда возвращается в распределительные трубы.

В системе используется небольшой резиновый робот, который внешне похож на волан для бадминтона. Устройство можно внедрить в систему подачи воды через любой пожарный гидрант. Там оно пассивно плывет по течению, регистрируя свое местоположение по мере продвижения. Параллельно робот обнаруживает даже небольшие изменения давления, измеряя его величину с помощью резиновой «юбки», которая заполняет собой диаметр трубы.

Затем устройство извлекается сетью из другого гидранта, данные анализируют. При этом не нужно ничего копать или даже прерывать водоснабжение. Помимо пассивного робота, который движется по трубе, влекомый силой воды, команда ученых разработала активную версию, которая может контролировать собственное движение.

PipeGuard намерена коммерциализировать свою роботизированную систему обнаружения утечек, чтобы сократить общие потери. Например, в Саудовской Аравии, где большая часть питьевой воды обеспечивается за счет дорогих опреснительных установок, около 33% теряется из-за утечки. И первые полевые испытания в начале 2017 года прошли именно там.

Компания Pipetech LLС, обслуживающая трубопроводы в Аль-Хобаре, предоставила для эксперимента ржавый отрезок трубы длиной около 1,6 км и диаметром 2 дюйма. Эта трубопроводная система часто используется для проверки и сертификации новых технологий. Испытания роботов в трубах с изгибами и Т-образными соединениями предполагали создание искусственной утечки для демонстрации возможностей системы.

В ходе этого эксперимента робот успешно обнаружил утечки и отличил их от ложных сигналов, вызванных изменениями давления или размера трубы, шероховатостями или ориентацией трубы в пространстве. Тесты проводили 14 раз в течение трех дней, и каждый раз, по словам члена команды PipeGuard, аспиранта Ю Ву (You Wu), проходили успешно. Более того, робот обнаружил крошечную утечку, которая составляла около 3,5 литров (галлона) в минуту, что на одну десятую меньше минимального размера, который стандартные методы обнаружения в среднем могут определить.

После полевых испытаний в Монтеррее команда планирует создать более гибкую складную версию своего робота, которая может быстро адаптироваться к трубам разного диаметра. Например, трубопроводная система Бостона представляет собой «микс» из 6-, 8- и 12-дюймовых труб. Многие из них устанавливались так давно, что в городе нет точных данных об их точном местоположении. Новая версия робота сможет раскрываться, как зонтик, и работать в трубах разного диаметра.

По словам исследователей, значение робота не только в том, чтобы сократить потери воды, но и в обеспечении более безопасного и надежного водоснабжения. Способность роботизированной системы обнаруживать мельчайшие утечки позволит проводит своевременные ремонтные работы задолго до действительно серьезной аварии. Более того, роботов можно использовать как в водопроводных трубах, так и в других системах распределения, например, природного газа.

Такие трубы тоже зачастую стары и не отмечены на картах. В них может накапливаться газ, что приводит к серьезным взрывам. Однако утечки в газопроводе обычно трудно обнаружить до тех пор, пока они не станут достаточно большими, чтобы человек мог чувствовать запах добавленных одорантов. Фактически система МТИ изначально была разработана для обнаружения этих утечек, а впоследствии адаптирована для водопровода.

PipeGuard надеется, что в конечном счете робот будет не просто искать утечки, но и получит специальный механизм, с помощью которого можно ремонтировать небольшие утечки на месте.

«Водоканал Санкт-Петербурга» представил сегодня два новых проекта: новый блок подготовки питьевой воды на Южной водопроводной станции и инновационную систему управления водоснабжением города (квартал К-17) сообщает официальный портал Администрации Санкт-Петербурга .В церемонии приняли участие губернатор Петербурга Валентина Матвиенко, директор ГУП «Водоканал Санкт-Петербурга» Феликс Кармазинов и заместитель министра регионального развития Анатолий Попов. Валентна Матвиенко сообщила, что в 2006 году правительство Санкт-Петербурга приняло решение о модернизации Южной водопроводной станции - одной из самый крупных в городе. Она подает до 900 тыс. кубометров воды в сутки потребителям Невского, Московского, Фрунзенского, Кировского и Красносельского районов. Строительство нового блока началось в 2007 году. Разработчиками технологического решения стала израильская компания «Тахал». На строительство этого комплекса из городского бюджета было выделено 3 млрд. 100 млн. рублей. «Это самый современный блок в России, аналогов которому нет. Он включает целый комплекс очистных сооружений. Многослойная система очистки позволяет добиться самого высокого качества воды, соответствующей всем международным и российским нормативам», - сказала губернатор. Производительность нового блока – 350 тысяч кубометров воды в сутки, это практически 20% воды, которая ежесуточно подается в городе. Уникальность блока еще и в том, что он позволяет решить проблему промывной воды, с помощью которой осуществляется регулярная очистка фильтров. Раньше эта вода сбрасывалась прямо в Неву. В новом блоке она проходит очистку. И благодаря переходу на замкнутый цикл использования промывной воды значительно снижается негативное воздействие на окружающую среду. К настоящему времени все строительные работы завершены, блок запущен в пуско-наладку. Подача воды потребителям начнется в конце 2010 года. Представляя журналистам проект квартала К-17, Феликс Кармазинов отметил, что подобная идея не реализована нигде в мире, кроме Петербурга. Проект работает в Красносельском районе на базе Урицкой насосной станции с 2008 года. Здесь создана инновационная система управления водоснабжением, которая позволяет в режиме реального времени отслеживать прохождение воды до каждого потребителя. Реализация проекта позволила оптимизировать работу насосных станций, в удаленном режиме контролировать их состояние, исключить избыточные напоры. Важным итогом стали такие показатели, как сокращение среднемесячного энергопотребления более чем на 42%, уменьшение непроизводительных потерь воды на 39%, сокращение количества повреждений на сетях на 32%. Инновационная система гарантирует петербуржцам отсутствие неплановых аварийных отключений и возможность экономии оплаты за воду. Валентина Матвиенко сообщила, что до середины 2011 года к новой инновационной системе управления будет подключено 40% потребителей. До конца 2012 года в эту систему войдет весь город. «Сегодня Петербург ведет Россию вперед», - сказал заместитель министра регионального развития Анатолий Попов. Он подчеркнул, что ввод нового блока на Южной водопроводной станции – это позитивный шаг развития не только Петербурга, но и всей России. «На примере Петербурга мы видим, как курс руководства страны на модернизацию, энергосбережение и энергоэффективность реально дает положительные результаты. Когда вся остальная Россия только думает о реализации каких-либо проектов, Петербург претворяет это в жизнь», – сказал заместитель министра. Валентина Матвиенко поблагодарила трудовой коллектив ГУП «Водоканал Санкт-Петербурга», проектировщиков, всех, кто участвовал в строительстве нового блока и реализации инновационной системы управления водоснабжением Петербурга.

2005–2015 годы объявлены ООН международной декадой «Вода для жизни». Один из путей обеспечения потребности в чистой воде - внедрение методов гидроволновой очистки жидких сред, который представляет Северо-Западный международный центр чистых производств. Рассказать об этой инновационной технологии мы попросили генерального директора Центра - Александра Александровича Старцева.

Александр Александрович, в чем заключается суть метода гидроволновой очистки?

Гидроволновой метод - это авторское ноу-хау, не имеющее аналогов в мировой практике. Его главное отличие - в отказе от традиционных способов нагрева жидкости и использовании вместо них механических и частотных воздействий (термодинамических циклов). Применение привычных теплообменных систем сопровождается образованием различных отложений - «накипи», новая технология лишена этого недостатка.

Сам же метод заключается в следующем: при прохождении жидкого потока через гидродинамический теплогенератор возникает эффект обтекания «плохо обтекаемого тела». В результате в жидкости образуются содержащие вакуум пустоты, внутри которых идет процесс парообразования. Причем идет он при температуре гораздо ниже 100 °C (например, при 30 °C), за счет этого экономится значительное количество энергии.

Дополнительное высокочастотное воздействие вызывает эффективную термоокислительную реакцию, которая приводит к разрушению молекул загрязняющих веществ, в том числе сложных органических соединений и тяжелых металлов.

Посредством контактных теплообменных процессов идет интенсивное парообразование с последующей конденсацией. В результате образуются чистая дистиллированная вода и влажный иловый осадок, имеющий по российской классификации IV класс опасности. При этом исходные сточные воды могли иметь I - II классы опасности. То есть токсичность отходов существенно снижается, и из жидкой фазы они переходят в твердые шламы.

А что происходит с загрязненной водой при использовании традиционных методов очистки?

Скажем, в результате применения обратного осмоса объем очищенной воды составляет лишь 35–40 % от исходного количества стоков, остальное - концентрированный жидкий высокоактивный «рассол». Гидроволновой же метод позволяет превратить почти всю имеющуюся в стоках воду в дистиллят и вновь использовать в производстве. При этом энергоэффективность нового метода - вне всякой конкуренции: например, на очистку кубометра сточных вод нефтеперерабатывающего завода потребуется лишь около 3 кВт час.

Кроме того, обратный осмос - довольно капризная и «тонкая» технология, она требует постоянного внимания квалифицированных специалистов. Если очищаемый поток неоднороден, то оборудование может просто отказать. Гидроволновой метод позволяет избежать этого.

Где может применяться гидроволновой метод очистки?

Установки, использующие этот принцип, могут использоваться в автономных модульных системах жизнеобеспечения, для опреснения и очистки воды от различных химикатов и тяжелых металлов в водопроводно-канализационном хозяйстве, для уничтожения полихлорбифенилов и пестицидов. Кроме того, они станут идеальным решением для очистки промышленных стоков и удаления нежелательных примесей из сырой нефти и жидкого топлива в нефтегазоперерабатывающей промышленности, для очистки различных емкостей и трубопроводов, для обезвреживания токсичных веществ и жидких радиоактивных отходов, утилизации отработанных ГСМ. Наконец, с их помощью можно готовить модифицированную водотопливную эмульсию. Она может использоваться как топливо для автономных электрогенераторов очистных установок, также мини-ТЭЦ контейнерного типа.

Основные преимущества гидроволнового метода очистки жидких сред Жидкая среда нагревается и испаряется не через теплообменную поверхность, а за счет высокочастотного механического воздействия на жидкость. Все тепло конденсации пара может быть использовано для нагрева и испарения исходной жидкой среды. В результате высокочастотных воздействий происходит разложение органических молекул на безвредные простые компоненты. Технология на основе гидроволнового метода не требует водоподготовки. Возможно сочетание гидроволнового метода с использованием нанотехнологий, в частности, экологически нейтральных наноматериалов на углеродной основе. Имеется возможность осуществления звукохимических реакций, при которых соосаждение элементов и их изотопов из очищаемого потока может стать более эффективным. Процесс отличается малым энергопотреблением. Опасные отходы при использовании метода не образуются. Создаваемое на основе данного метода оборудование отличается надежностью, долговечностью и простотой эксплуатации. Кроме того, контейнерное исполнение установок позволяет избежать значительных капитальных затрат и эксплуатировать оборудование «прямо с колес».

- Расскажите об оборудовании, использующем гидроволновой метод.

Разработчиком и создателем опытно-промышленного оборудования является московский научно-производственный центр «ТЭРОС–МИФИ», руководит которым В. С. Афанасьев. 24 июля 2008 года инновационные разработки компании были представлены Президенту Российской Федерации Д. А. Медведеву и заслужили его высокую оценку. Также компанию «ТЭРОС–МИФИ» поддерживают Совет Федерации и Правительство России.

В марте 2010 года сборочный участок компании «ТЭРОС–МИФИ» посетил Святейший Патриарх Московский и всея Руси Кирилл. Он с интересом ознакомился с инновационными разработками и благословил начало реализации демонстрационного проекта «Ковчег». Проект подразумевает создание искусственного биосферного объекта с автономными системами жизнеобеспечения на основе гидроволновых технологий.

Области эффективного применения технологий на основе гидроволнового метода: очистка сточных вод различных промышленных, сельскохозяйственных предприятий и сферы ЖКХ любой степени загрязнения; удаление из сточных вод органических веществ, вызывающих «цветение» водных объектов (образование сине-зеленых водорослей); очистка промышленных стоков и подземных вод, загрязненных мышьяком и другими токсичными веществами; очистка ливневых стоков, инфильтрата полигонов и свалок отходов для защиты от загрязнения водоемов, рек и морей; очистка и опреснение морской воды, обезжелезивание, обессоливание природных вод различной степени загрязнения; очистка подземных и поверхностных источников водоснабжения от высокомолекулярных химических загрязнителей (метилтредбутилового эфира, стойких органических загрязнителей, полиароматических углеводородов и т. д.); обезвреживание несжигающим способом стойких органических загрязнителей, химических реактивов и отравляющих веществ; очистка промстоков в процессе нефтегазопереработки, а также очистка сырой нефти и нефтепродуктов от серы и других нежелательных примесей; удаление нефтешламов и остатков различных химических веществ в танках, цистернах, емкостях, трубопроводах; очистка токсичных промстоков в текстильной и кожевенной промышленности; очистка воды от высокосолевых жидких радиоактивных отходов; создание модифицированных водотопливных эмульсий; утилизация отработанных горюче-смазочных материалов путем создания стойких водотопливных эмульсий и последующего высокотемпературного их сжигания с одновременным получением энергии; создание высокоэффективного оборудования для производства биотоплива, например этанола, из отходов лесозаготовки и деревообработки, для очистки стоков ЦБК; создание экономичного вспомогательного оборудования для агропромышленного сектора.

Как уже было сказано выше, оборудование на основе гидроволновых технологий отличается низким энергопотреблением, температурный режим его работы не превышает 100 °С. Расходные материалы (фильтры, мембраны, ионообменные смолы, сорбенты, химические реагенты и т. д.) не требуются. Производительность одного модуля с линейными размерами 10х3х3 метров - до 50 кубометров очищенных стоков или опресненной воды в час (за сутки - железнодорожный состав из 20 цистерн). По существу, это мини-завод по производству дистиллята из морской воды, пресной воды любой степени загрязнения, промышленных и хозяйственно-бытовых стоков.

Насколько успешно идет внедрение нового оборудования?

В 2002 году была создана и направлена в Саудовскую Аравию опытная установка по очистке и опреснению морской воды производительностью 1 м³ в час. С 2004 года на одном из государственных объектов в Московской области работает установка по очистке артезианских вод производительностью 50 м³ в час. Установка очистки артезианских вод скважин производительностью 3 м³ в час отправлена в Республику Коми на ОАО «Северная нефть». В Нижегородской области на аккумуляторном заводе в г. Бор запущена установка по обезжелезиванию воды производительностью 7 м³ в час.

По линии государственного заказа на основе гидроволнового метода создана установка для обезвреживания отравляющих химических веществ и реакционных масс. Разработана и успешно испытана опытная установка по очистке низкоактивных жидких радиоактивных отходов для предприятий атомной промышленности.

В рамках международной программы запущены шесть установок кавитационной подготовки смеси отравляющих веществ и сточных вод для уничтожения в плазменной печи.

Кроме того, проведены эксперименты по улучшению качества каспийской нефти (удалению серы и других нежелательных примесей) и по понижению температуры замерзания нефти (с +8 до –15 °C).

Получены лицензии на проектирование и производство оборудования для ядерных установок. Изготовленные водоочистные установки имеют все необходимые сертификаты и акты ввода в эксплуатацию. Разработки, в которых используется гидроволновой метод, защищены 15 российскими и зарубежными патентами.

Судя по всему, новая технология представляет интерес как для России, так и для других стран. Каким образом может быть организовано международное сотрудничество в области внедрения гидроволнового метода очистки?

Наиболее приемлемым вариантом такого сотрудничества является инициирование международного проекта под эгидой Организации Объединенных Наций по промышленному развитию (ЮНИДО). Заинтересованные стороны договариваются на межправительственном уровне. С российской стороны переговоры ведет Росприроднадзор - Федеральная служба по надзору в сфере природопользования, которая входит в структуру Министерства природных ресурсов и экологии Российской Федерации. В процессе переговоров определяются предмет проекта, сроки его реализации, ожидаемый результат, участвующие партнеры и доноры. После этого стороны обращаются в Секретариат ЮНИДО и подписывают необходимые соглашения.

В процессе реализации проекта создается инновационное опытно-промышленное оборудование, которое проходит испытания в странах - участницах проекта. Затем принимается решение о масштабном промышленном производстве и при необходимости с помощью ЮНИДО готовятся условия для дальнейшего продвижения оборудования.

Редакция «ЮНИДО в России»

Источники:

www.unido-russia.ru/archive/num1/art14/

www.newsland.ru/News/Detail/id/551725/

Внедрение современных инновационных технологий является одним из приоритетных направлений Целевой программы "Чистая вода Москвы", нашедших отражение в деятельности МГУП "Мосводоканал". Кроме обеспечения соответствия современным требованиям к качеству питьевой воды, инновационные технологии предлагают экологичные и эффективные пути решения основной задачи предприятия - обеспечения жителей качественной питьевой водой и эффективной очисткой использованной воды.

Начало полномасштабного внедрения новых технологий было положено в 2002 г. когда был введен в эксплуатацию блок водоподготовки с применением озоносорбционной доочистки воды производительностью 240 тыс. куб. м в сутки. В 2009 году был введен в эксплуатацию еще один блок сооружений производительностью 160 тыс. куб. м в сутки, также предусматривающий применение технологии озоносорбции.

Развитием направления модернизации технологий в области очистки природных вод является ввод в эксплуатацию в 2006 году Юго-Западной водопроводной станции производительностью 250,0 тыс.куб.м/сут. В состав технологических сооружений впервые в истории московской системы водоснабжения включена стадия мембранной ультрафильтрации.

Целевой программой "Чистая вода Москвы" предусмотрен поэтапный перевод до 2020 года всех действующих водопроводных станций Москвы на применение технологий озоносорбции и мембранной фильтрации. Эти технологии являются наилучшими доступными технологиями водоподготовки так как позволяют получать чистую питьевую воду независимо от состояния водоисточников.

Важным направлением развития станций водоподготовки является повышение безопасности их эксплуатации. Учитывая опасность применения газообразного хлора, в Мосводоканале осуществляется перевод технологии водоподготовки с хлора на гипохлорит натрия. В 4-м квартале 2009 года состоялся ввод в эксплуатацию технологического комплекса обеззараживания гипохлоритом натрия на Западной станции водоподготовки. До 2011 года планируется перевод всех станций на эту технологию.

Наряду с этим в Мосводоканале постоянно совершенствуются процессы обеззараживания воды. В связи с ужесточением государственного норматива на содержание в питьевой воде хлороформа, на станциях водоподготовки проводится целенаправленная отработка режимов хлорирования. В результате данной работы концентрация хлороформа снизилась до величины менее 30 мкг/л при нормативе 60 мкг/л.

Качество воды, которая поступает к потребителю, зависит не только от технологий очистки, но и от состояния водопроводной сети. В настоящее время из 11 тыс.км самортизировано 6 тыс.км трубопроводов, или 52% от их протяжённости. Программой предусматривается сократить этот процент к 2020 году до 45,5. Это потребует ежегодного обновления трубопроводов на уровне не менее 2% от всей протяженности сетей (сейчас этот показатель оставляет 1,5%). Приоритетным является использование труб из высокопрочного чугуна, срок службы которых составляет 100-120 лет.

Мосводоканал – одно из основных предприятий города, оказывающих положительное влияние на оздоровление окружающей среды. Московская канализация – это надежный экологический щит столицы, обеспечивающий санитарное и экологическое благополучие мегаполиса. В соответствии с реализацией принятых Правительством Москвы программ по развитию системы водоснабжения и канализации на период до 2020 года, осуществляется коренная реконструкция системы канализации.

В условиях экономии воды и ежегодного сокращения объемов водопотребления и водоотведения приоритетными направлениями развития являются повышение качества водоочистки и повышение надежности работы сетей и сооружений.

Основными задачами развития водопроводно-канализационного хозяйства любого города являются:

  • ускоренная модернизация сетевого хозяйства – как в водоснабжении, так и в канализации.
  • повышение качества подготовки питьевой и очистки сточной воды,
  • повышение надежности и эффективности водопроводно-канализационного хозяйства города.

Принцип работы, заключающийся в проведении восстановительных работ, когда произошла авария, так называемая тактика «пожарной команды», на сегодняшний день бесперспективен. Ускоренная модернизация сетевого хозяйства с использованием передовых методов и инновационных технологий - основная мера предупреждения аварийных ситуаций.

Реконструкция сооружений сетевого хозяйства города в стесненных условиях городской застройки представляет серьезную проблему. Оптимальным выходом стало использование бестраншейных технологий , по которым сейчас выполняется около 80% общего объема реконструкции сетей.

Применительно к канализации, в последние годы, в дополнение к освоенным в 90-е годы технологиям реконструкции трубопроводов малого и среднего диаметра, взяты на вооружение самые современные методы восстановления канализационных коллекторов и каналов большого диаметра. Освоена технология восстановления каналов сложной формы с помощью составных модулей.

Благодаря использованию современных материалов и технологий при восстановлении и замене ветхих самотечных сетей и напорных канализационных трубопроводов в последние годы удалось не допустить возникновения крупных аварий на канализационных сетях и насосных станциях, а тенденция аварий неуклонно снижается из года в год.

В соответствии с ужесточением требований к качеству очистки сточных вод на московских очистных сооружениях, специалистами АО «Мосводоканал» постоянно проводятся мероприятия по поиску, разработке и внедрению современных наилучших доступных технологий.

Удаление биогенных элементов

Ультрафиолетовое обеззараживание сточных вод

Основными направлениями развития столичных канализационных очистных сооружений является их реконструкция с переходом на современные технологии удаления азота и фосфора и внедрение систем обеззараживания ультрафиолетом . Сочетание этих двух технологий позволяет сегодня возвращать в природу воду, которая полностью соответствует отечественным санитарно-гигиеническим требованиям и европейским стандартам.

Еще одним немаловажным на сегодняшний день направлением развития очистных сооружений является получение электроэнергии от альтернативных источников . Подобным источником на очистных сооружениях является образующийся в процессе сбраживания осадка сточных вод биогаз. Преобразование биогаза с выработкой электро- и теплоэнергии происходит на мини-ТЭС. Подобного рода сооружения, работающие на биотопливе, позволяют повысить надежность энергоснабжения очистных сооружений, что является залогом недопущения сброса неочищенных сточных вод в водоприемники в периоды отключения внешних источников электроэнергии.

Рассказать друзьям