История развития счетных устройств и вычислительной техники. Вычислительная машина. Появление аналоговых вычислителей в предвоенные годы

💖 Нравится? Поделись с друзьями ссылкой

История развития средств инструментального счета позволяет лучше понять действие современных вычислительных машин. Как говорил Лейбниц: "Кто хочет ограничиться настоящим без знания прошлого, тот никогда не поймет настоящего." Поэтому изучение истории развития ВТ является важной составной частью информатики.

Люди с древних времен использовали для счета различные приспособления. Первым таким "приспособлением" были собственные пальцы. Полное описание пальцевого счета составил в средневековой Европе ирландский монах Беда Достопочтенный (7 век н.э.). Различные приемы пальцевого счета использовались до 18 века.

В качестве средств инструментального счета использовались веревки с узелками.

Наиболее широкое распространение в древности получил абак, сведения о котором известны с V в до н.э. Числа в нем представлялись камешками, раскладываемые по столбцам. В древнем Риме камешки обозначались словом Calculus, отсюда произошли слова, обозначающие счет (английское calculate – считать).

Счеты, широко использовавшиеся на Руси, по принципу действия похожи на абак.

Необходимость использования различных устройств для счета объяснялись тем, что письменный счет был затруднен. Во-первых, это было связанно со сложной системой записи чисел, во-вторых, писать умели немногие, в-третьих, средства для записи (пергамент) были очень дороги. С распространением арабских цифр и изобретением бумаги (12-13 век) стал широко развиваться письменный счет, и абак стал не нужен.

Первым устройством, механизирующий счет в привычном для нас понимании, стала счетная машинка, построенная в 1642 году французским ученым Блезом Паскалем. Она содержала набор вертикально расположенных колес с нанесенными на них цифрами 0-9. Если такое колесо совершало полный оборот, оно сцеплялось с соседним колесом и проворачивало его одно деление, обеспечивая перенос из одного разряда в другой. Такая машина могла складывать и вычитать числа и использовалась в конторе отца Паскаля для подсчета сумм собираемых налогов.

Различные проекты и даже действующие образы механических счетных машин создавались и до машины Паскаля, но именно машина Паскаля получила широкую известность. Паскаль взял патент на свою машину, продал несколько десятков образцов; его машиной интересовались вельможи и даже короли; например, одна из машин была подарена шведской королеве Христине.

В 1673г. немецкий философ и математик Готфрид Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Эта машина стала основой массовых счетных приборов - арифмометров. Выпуск механических счетных машин был налажен в США в 1887, в России в 1894. Но эти машины были ручными, то есть требовали постоянного участия человека. Они не автоматизировали, а лишь механизировала счет.

Большое значение в истории вычислительной техники занимают попытки "заставить" технические устройства выполнять какие-либо действия без участия человека, автоматически.

Большое развитие такие механические автоматы, построенные на основе часовых механизмов, получили в 17-18 веках. Особенно были известны автоматы французского механизма Жака де Вокансона, среди которых была игрушка-флейтист, внешне выглядевшая как обычный человек. Но это были всего лишь игрушки.

Внедрение автоматизации в промышленное производство связывается с именем французского инженера Жаккара, который изобрел устройство управления ткацким станком на основе перфокарт – картонок с отверстиями. По-разному пробивая отверстия на перфокартах, можно было получать на станках ткани с разным переплетением нитей.

Отцом вычислительной техники считается английский ученый 19 века Чарльз Бэббидж, который впервые предпринял попытку построить счетную машину, работающую по программе. Машина предназначалась для помощи Британском морскому ведомству в составлении мореходных таблиц. Бэббидж считал, что машина должна иметь устройство, где будут храниться числа, предназначенные для вычислений ("память"). Одновременно там же должны находиться команды о том, что с этими числами делать ("принцип хранимой программы"). Для выполнения операций над числами в машине должно быть специальное устройство, которое Беббидж назвал "мельницей", а в современных компьютерах ему соответствует АЛУ. Вводиться в машину числа должны были вручную, а выводиться на печатающее устройство ("устройства ввода/вывода"). И наконец, должно было быть устройство, управляющее работой всей машины ("УУ"). Машина Бэббиджа была механической и работала с числами, представленными в десятичной системе.

Научные идеи Беббиджа увлекли дочь знаменитого английского поэта Джорджа Байрона – леди Аду Лавлейс. Она составила программы, по которым машина могла бы производить сложные математические расчеты. Многими понятиями, введенными Адой Лавлейс в описании тех первых в мире программ, в частности, понятием "цикл", широко пользуются современные программисты.

Следующий важный шаг на пути автоматизации вычислений сделал примерно через 20 лет после смерти Беббиджа американец Герман Холлерит, который изобрел электромеханическую машину для вычислений с помощью перфокарт. Машина использовалась для обработки данных переписи населения. На перфокартах вручную пробивались отверстия в зависимости от ответов на вопросы переписи; сортировальная машина позволяла распределять карты на группы в зависимости от места пробитых отверстий, а табулятор подсчитывал число карт в каждой группе. Благодаря этой машине обработку результатов переписи населения Соединенных Штатов Америки 1890г удалось провести втрое быстрее предыдущей.

В 1944 году в США под руководством Говарда Айкина была построена электромеханическая вычислительная машинка, известная как "Марк–1 ", а затем и "Марк–2 ". Эта машина была основана на реле. Поскольку реле имеют два устойчивых состояния, а идея отказаться от десятичной системы еще не приходила в голову конструкторам, то числа представлялись в двоично-десятичной системе: каждая десятичная цифра представлялась четырьмя двоичными и хранилась в группе их четырех реле. Скорость работы составляла около 4х операций в секунду. Тогда же было создано еще несколько релейных машин, в том числе советская релейная вычислительная машина РВМ–1, сконструированная в 1956г Бессоновым и успешно работавшая до 1966г.

За точку отсчета эры ЭВМ обычно принимают 15 февраля 1946г, когда ученые Пенсильванского университета ввели в строй первый в мире компьютер на электронных лампах – ЭНИАК. Первым применением ЭНИАК было решение задач для сверхсекретного проекта атомной бомбы, да и затем он использовался в основном в военных целях. В ЭНИАК не существовало программы, хранимой в памяти; "программирование" осуществлялось с помощью установки проводов-перемычек между отдельными элементами.

С 1944 года в работе над созданием ЭВМ принимал участие Джон фон Нейман. В 1946 году была опубликована его статья, в которой были сформулировали два важнейших принципа, лежащие в основы всех современных ЭВМ: использование двоичной системы счисления и принцип хранимой программы.

Появились ЭВМ и в СССР. В 1952 г под руководством академика Лебедева была создана самая быстродействующая ЭВМ в Европе – БЭСМ, в 1953г начат выпуск серийной ЭВМ "Стрела". Серийные советские машины были на уровне лучших мировых образцов.

Началось бурное развитие ВТ.

Первая вычислительная машина на электронных лампах (ЭНИАК) насчитывала около 20 тыс. электронных ламп, размещалась в огромном зале, потребляла десятки кВт электроэнергии и была очень ненадежна в работе – фактически работала только небольшие промежутки времени между ремонтами.

С тех пор развитие ВТ прошло огромный путь. Выделяют несколько поколений ЭВМ. Под поколением понимается определенный этап развития аппаратуры, характеризующийся ее параметрами, технологией изготовления составных частей и т.д.

1 поколение – начало 50х годов (БЭСМ, Стрела, Урал). Основаны на электронных лампах. Большая потребляемая мощность, малая надежность, низкое быстродействие (2000 оп/с), малый объем памяти (несколько килобайт); отсутствовали средства организации вычислительных процессов, оператор работал непосредственно за пультом.

2 поколение – конец 50х годов (Минск – 2, Раздан, Наири). Полупроводниковые элементы, печатный монтаж, быстродействие (50-60 тыс. оп/с); появление внешних магнитных запоминающих устройств, появились примитивные операционные системы и трансляторы с алгоритмических языков.

3 поколение – середина 60х годов. Построены на основы интегральных микросхем, использовались стандартные электронные блоки; быстродействие до 1,5 млн. оп/с; появились развитые программные средства.

4 поколение – построены на основе микропроцессоров. Компьютеры специализируются, появляются их различные типы: супер ЭВМ – для решения очень сложных вычислительных задач; мэйнфреймы – для решения экономических и расчетных задач в рамках предприятия, ПК – для индивидуальной работы пользования. Сейчас ПК занимают преобладающую часть рынка компьютеров, а их возможности в миллионы раз превосходят возможности первых ЭВМ.

Первый ПК Altair 8800 появился в 1975г в фирме MITS, однако возможности его были весьма ограничены, и коренного перелома в использовании компьютеров не произошло. Революция в индустрии ПК была совершена двумя другими фирмами – IBM и Apple Computer, соперничество которых способствовало бурному развитию высоких технологий, улучшению технических и пользовательских качеств ПК. В результате этого состязания компьютер превратился в неотъемлемую часть повседневной жизни.

История фирмы Apple начался в 1976г, когда в гараже города Лос–Альмос штата Калифорния Стивен Джобс и Стивен Возняк (обоим было чуть за 20) собрали свой первый ПК. Однако настоящий успех пришел к фирме благодаря выпуску компьютера Apple–II, который был создан на основе микропроцессора фирмы Motorolla, внешним видом напоминал обычный бытовой прибор, а по цене был доступен рядовому американцу.

Фирма IBM родилась в 1914 году и специализировалась на выпуске канцелярских товаров пишущих машинок. В пятидесятые годы основатель фирмы Томас Уотсон переориентировал ее на выпуск больших ЭВМ. В области ПК фирма вначале заняла выжидательную позицию. Бешенный успех Apple насторожил гиганта, и в кратчайшие сроки был создан первый IBM PC, представленный в 1981г. Используя свои огромные ресурсы, корпорация буквально наводнила рынок своими ПК, ориентируясь на самую емкую сферу их применения – деловой мир. IBM PC был основан на новейшем микропроцессоре фирмами Intel, позволившими значительно расширить возможности нового компьютера.

Чтобы завоевать рынок, IBM впервые использовала принцип "открытой архитектуры". IBM PC не изготавливался как единое целое, а собирался из отдельных модулей. Любая фирма могла разработать устройство, совместимое с IBM PC. Это принесло IBM огромный коммерческий успех. Но в то же время на рынке стало появляться множество компьютеров – точных копий IBM PC – так называемых клонов. На появление "двойников" фирма ответила резким снижением цен и появлении новых моделей.

В ответ на это фирма Apple создала Apple Macintosh, снабженный мышкой и имеющий высококачественный графический дисплей, а также впервые оснащенный микрофоном и генератором звука. А главное – имелось удобное и легкое в освещении ПО. Мас поступил в продажу и имел определенный успех, но вернуть лидерство на рынке ПК фирме Apple не удалось.

Стремясь приблизиться по удобству использования к компьютерам Apple, фирма IBM стимулировала разработку современного ПО. Огромную роль здесь сыграло создание фирмой Microsoft OC Windows"95.

С тех пор программное обеспечение становиться все более удобным и понятием. ПК оснащаются новыми устройствами и из прибора для профессиональной деятельности становятся "центрами цифровых развлечений", объединяя в себе функции различных бытовых приборов.

Поколения:

I. ЭВМ на эл. лампах, быстродействие порядка 20000 операций в секунду, для каждой машины существует свой язык программирования. (“БЭСМ”,”Стрела”). II. В 1960 г. в ЭВМ были применены транзисторы, изобретённые в 1948 г., они были более надёжны, долговечны, обладали большой оперативной памятью. 1 транзистор способен заменить ~40 эл. ламп и работает с большей скоростью. В качестве носителей информации использовались магнитные ленты. (“Минск-2”,”Урал-14). III. В 1964 г. появились первые интегральные схемы (ИС), которые получили широкое распространение. ИС - это кристалл, площадь которого 10 мм2. 1 ИС способна заменить 1000 транзисторов. 1 кристалл - 30-ти тонный “Эниак”. Появилась возможность обрабатывать параллельно несколько программ. IV. Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма. (“Иллиак”,”Эльбрус”). V. Синтезаторы, звуки, способность вести диалог, выполнять команды, подаваемые голосом или прикосновением.

Ранние приспособления и устройства для счёта

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были счётные палочки. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов. Такими приспособлениями пользовались торговцы и счетоводы того времени. Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, механический арифмометр, электронный компьютер. Принцип эквивалентности широко использовался в простейшем счётном устройстве Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента. Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при "

"Считающие часы» Вильгельма Шикарда

В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница.

Примерно в 1820 году Charles Xavier Thomas создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х. Лейбниц также описал двоичную систему счисления, центральный ингредиент всех современных компьютеров. Однако вплоть до 1940-х, многие последующие разработки (включая машины Чарльза Бэббиджа и даже ЭНИАК 1945 года) были основаны на более сложной в реализации десятичной системе.

Перфокарточная система музыкального автомата

В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования. В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара. В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки, разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи, переданный под мандат в соответствии с Конституцией. Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Во многих компьютерных решениях перфокарты использовались до (и после) конца 1970-х.

1835-1900-е: Первые программируемые машины

В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций. По стопам Бэббиджа, хотя и не зная о его более ранних работах, шёл Percy Ludgate, бухгалтер из Дублина [Ирландия]. Он независимо спроектировал программируемый механический компьютер, который он описал в работе, изданной в 1909 году.

1930-е - 1960-е: настольные калькуляторы

Арифмометр «Феликс» - самый распространённый в СССР. Выпускался в 1929-1978 гг

В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке. В 1950-х - 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII, который использовал дисплей на трубках «Nixie» и 177 миниатюрных тиратроновых трубок. В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на трубках «Nixie» и мог вычислять логарифмы.

Появление аналоговых вычислителей в предвоенные годы

Дифференциальный анализатор, Кембридж, 1938 год Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба - положения колёс или электрическое напряжение и ток - подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие физические явления значениями электрического напряжения и тока.

Первые электромеханические цифровые компьютеры

Z-серия Конрада Цузе В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей. Следующая машина Цузе - Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой. Замена сложной в реализации десятичной системы на двоичную, сделала машины Цузе более простыми и, а значит, более надёжными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу. Программы для Z3 хранились на перфорированной плёнке. Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 является универсальным компьютером (если игнорировать ограничения на размер физической памяти). В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти что и данные - предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.

Британский «Колосс»

Британский Colossus был использован для взлома немецких шифров в ходе Второй мировой войны. «Колосс» стал первым полностью электронным вычислительным устройством. В нём использовалось большое количество электровакуумных ламп, ввод информации выполнялся с перфоленты. «Колосс» можно было настроить на выполнение различных операций булевой логики, но он не являлся тьюринг-полной машиной. Помимо Colossus Mk I, было собрано ещё девять моделей Mk II. Информация о существовании этой машины держалась в секрете до 1970-х гг. Уинстон Черчилль лично подписал приказ о разрушении машины на части, не превышающие размером человеческой руки. Из-за своей секретности, «Колосс» не упомянут во многих трудах по истории компьютеров.

Первое поколение компьютеров с архитектурой фон Неймана

Память на ферритовых сердечниках. Каждый сердечник - один бит. Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами. Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем. На самом деле, EDSAC был создан на основе архитектуры компьютера EDVAC, наследника ENIAC. В отличие от ENIAC, использовавшего параллельную обработку, EDVAC располагал единственным обрабатывающим блоком. Такое решение было проще и надёжнее, поэтому такой вариант становился первым реализованным после каждой очередной волны миниатюризации. Многие считают, что Манчестерский Марк I / EDSAC / EDVAC стали «Евами», от которых ведут свою архитектуру почти все современные компьютеры.

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники СССР, Украина. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду. Другой машиной того времени была австралийская CSIRAC, которая выполнила свою первую тестовую программу в 1949 году.

В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработке компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

В июне 1951 года UNIVAC 1 был установлен в Бюро переписи населения США. Машина была разработана в компании Remington Rand, которая, в конечном итоге, продала 46 таких машин по цене более чем в 1 млн $ за каждую. UNIVAC был первым массово производимым компьютером; все его предшественники изготовлялись в единичном экземпляре. Компьютер состоял из 5200 электровакуумных ламп, и потреблял 125 кВт энергии. Использовались ртутные линии задержки, хранящие 1000 слов памяти, каждое по 11 десятичных цифр плюс знак (72-битные слова). В отличие от машин IBM, оснащаемых устройством ввода с перфокарт, UNIVAC использовал ввод с металлизированной магнитной ленты стиля 1930-х, благодаря чему обеспечивалась совместимость с некоторыми существующими коммерческими системами хранения данных. Другими компьютерами того времени использовался высокоскоростной ввод с перфоленты и ввод/вывод с использованием более современных магнитных лент.

Первой советской серийной ЭВМ стала Стрела, производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ (Мейнфрейм) с треёхадресной системой команд. ЭВМ имела быстродействие 2000-3000 операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 000 слов, объём оперативной памяти - 2048 ячеек по 43 разряда. Компьютер состоял из 6200 ламп, 60 000 полупроводниковых диодов и потреблял 150 кВт энергии.

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ (которые носят названия микропрограмма или firmware).

В 1956 году IBM впервые продаёт устройство для хранения информации на магнитных дисках - RAMAC (Random Access Method of Accounting and Control). Оно использует 50 металлических дисков диаметром 24 дюйма, по 100 дорожек с каждой стороны. Устройство хранило до 5 МБ данных и стоило по 10 000 $ за МБ. (В 2006 году, подобные устройства хранения данных - жёсткие диски - стоят около 0,001 $ за Мб.)

1950-е - начало 1960-х: второе поколение

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

Компьютеры второго поколения обычно состояли из большого количества печатных плат, каждая из которых содержала от одного до четырёх логических вентилей или триггеров. В частности, IBM Standard Modular System определяла стандарт на такие платы и разъёмы подключения для них. В 1959 году на основе транзисторов IBM выпустила мейнфрейм IBM 7090 и машину среднего класса IBM 1401. Последняя использовала перфокарточный ввод и стала самым популярным компьютером общего назначения того времени: в период 1960-1964 гг. было выпущено более 100 тыс. экземпляров этой машины. В ней использовалась память на 4000 символов (позже увеличенная до 16 000 символов). Многие аспекты этого проекта были основаны на желании заменить перфокарточные машины, которые широко использовались начиная с 1920-х до самого начала 1970-х гг. В 1960 году IBM выпустила транзисторную IBM 1620, изначально только перфоленточную, но вскоре обновлённую до перфокарт. Модель стала популярна в качестве научного компьютера, было выпущено около 2000 экземпляров. В машине использовалась память на магнитных сердечниках объёмом до 60 000 десятичных цифр.

В том же 1960 году DEC выпустила свою первую модель - PDP-1, предназначенную для использования техническим персоналом в лабораториях и для исследований.

В 1961 году Burroughs Corporation выпустила B5000, первый двухпроцессорный компьютер с виртуальной памятью. Другими уникальными особенностями были стековая архитектура, адресация на основе дескрипторов, и отсутствие программирования напрямую на языке ассемблера.

Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду. Машины изготавливались на базе транзисторов с тактовой частотой 5 МГц. Всего было выпущено 39 ЭВМ.

Наилучшей отечественной ЭВМ 2-го поколения считается БЭСМ-6, созданная в 1966. В архитектуре БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. ЭВМ имела 128 Кб оперативной памяти на ферритовых сердечниках и внешнюю памяти на магнитных барабанах и ленте. БЭСМ-6 работала с тактовой частотой 10 МГц и рекордной для того времени производительностью - около 1 миллиона операций в секунду. Всего было выпущено 355 ЭВМ.

1960-е и далее: третье и последующие поколения

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel). В течение 1960-х наблюдалось определённое перекрытие технологий 2-го и 3-го поколений. В конце 1975 года, в Sperry Univac продолжалось производство машин 2-го поколения, таких как UNIVAC 494.

Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже - первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

1970-1990-четвертое поколение ЭВМ

Обычно считается, что период с 1970 по 1990 гг. принадлежит компьютерам четвертого поколения. Однако есть и другое мнение - многие полагают, что достижения этого периода не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим «третьему с половиной» поколению компьютеров, и только с 1985 г., по их мнению, следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

И, конечно же, самое главное - что с начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой «несерьезной» технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора)-набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус". "Эльбрус-1КБ" имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с.

Пример: IBM 370-168

Изготовлена в 1972 г. Эта модель машины была одной из самых распространенных. Емкость ОЗУ - 8.2 Мбайт. Производительность - 7.7 млн. операций в секунду.


1990-…до наших дней-5 поколение ЭВМ

Переход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.

Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них - собственно компьютер, в котором связь с пользователем осуществляет блок, называемый «интеллектуальным интерфейсом». Задача интерфейса - понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Пример: IBM eServer z990

Изготовлен в 2003 г. Физические параметры: вес 2000 кг., потребляемая мощность 21 КВт., площадь 2,5 кв. м., высота 1,94 м., емкость ОЗУ 256 ГБайт, производительность - 9 млрд. инструкций/сек.

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак . Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты .

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин »), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия . Машину Калмара назвали арифмометр . Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины , которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada . День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные . Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором , могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1 », по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1 » был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте . Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами . Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора , но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple ; в СССР ПК появились в 1985г .

Таблица 1. Поколения ЭВМ

Показатель

Поколения ЭВМ

1950-1960-е годы

1960-1970-е годы

1970-1980-е годы

Четвертое

1980-1990-е годы

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Магнитный диск

Перфоленты, магнитный диск (30 см в диаметре)

Магнитные и оптические диски

Максимальная емкость ОЗУ, байт

Максимальное быстродействие процессора (оп/с)

Многопроцессорность

Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

Технические средства реализации информационных процессов

История развития ВТ имеет несколько периодов: механический, электромеханический и электронный.

Для проведения вычислений в Древнем Вавилоне (около 3 тыс. лет до н.э.), а затем в Древней Греции и Древнем Риме (IV век до н.э.) использовали счетные доски под названием абак . Доска абака представляла собой глиняную пластину с углублениями, в которые раскладывали камушки. В дальнейшем углубления были заменены проволокой с нанизанными косточками (прообраз счет).

В 17 веке в Европе ученые-математики (В. Шиккард (1623 ᴦ.) и Блез Паскаль (1642 ᴦ.), Г. Лейбниц (1671 ᴦ.)) изобретают механические машины , способные автоматически выполнять арифметические действия (прообраз арифмометра).

В первой трети 19 века английский математик Ч. Бэббидж разработал проект программируемого автоматического вычислительного механического устройства, известного как ʼʼаналитическая машинаʼʼ Бэббиджа. Меценат проекта графиня Ада Августа Лавлейс была программистом этой ʼʼаналитической машиныʼʼ.

Г. Холлерит в 1888 ᴦ. создал электромеханическую машину, которая состояла из перфоратора, сортировщика перфокарт и суммирующей машины, названной табулятором. Впервые эта машина использовалась в США при обработке результатов переписи населœения.

Скорость вычислений в механических и электромеханических машинах была ограничена, в связи с этим в 1930-х гᴦ. начались разработки электронных вычислительных машин (ЭВМ), элементной базой которых стала трехэлектродная вакуумная лампа.

В 1946 ᴦ. в университете ᴦ. Пенсильвания (США) была построена электронная вычислительная машина, получившая название UNIAK. Машина весила 30 т, занимала площадь 200 кв.м., содержала 18000 ламп. Программирование велось путем установки переключателœей и коммутации разъемов. В результате на создание и выполнение даже самой простой программы требовалось очень много времени. Сложности в программировании на UNIAK натолкнули Джона фон Неймана, бывшего консультантом проекта͵ на разработку новых принципов построения архитектуры ЭВМ.

В СССР первая ЭВМ была создана в 1948 ᴦ.

Историю развития ЭВМ принято рассматривать по поколениям.

Первое поколение (1946-1960) - ϶ᴛᴏ время становления архитектуры машин фон-неймановского типа, построенных на электронных лампах с быстродействием 10-20 тыс.оп/с. ЭВМ первого поколения были громоздкими и ненадежными. программные средства были представлены машинными языками.

В 1950 ᴦ. в СССР была запущена в эксплуатацию МЭСМ (малая электронная счетная машина), а еще через два года появилась большая электронно-счетная машина (10 тыс.оп/с).

Второе поколение (1960 – 1964) - ϶ᴛᴏ машины, построенные на транзисторах с быстродействием до сотен тысяч операций в секунду. Для организации внешней памяти стали использоваться магнитные барабаны, а для основной памяти – магнитные сердечники. В это же время были разработаны алгоритмические языки высокого уровня, как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины. Первой ЭВМ с отличительными чертами второго поколения была IBM 704.

Третье поколение (1964 – 1970) характеризуются тем, что вместо транзисторов стали использоваться интегральные схемы (ИС) и полупроводниковая память.

Большинство машин, относящихся к третьему поколению по своим особенностям, входили в состав серии (семейства) машин ʼʼSystem/360ʼʼ (аналог ЕС ЭВМ), выпущенной фирмой IBM в серединœе 60-х гᴦ. Машины этой серии имели единую архитектуру и были программно совместимыми.

В данный время в СССР появился первый суперкомпьютер БЭСМ 6, который имел производительность 1 млн. оп/с.

Четвертое поколение (1970 – 1980) - ϶ᴛᴏ машины, построенные на больших интегральных схемах (БИС). Такие схемы содержат до нескольких десятков тысяч элементов в кристалле. ЭВМ этого поколения выполняют десятки и сотни миллионов операций в секунду.

В 1971 ᴦ. появился первый в мире четырехразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, а еще через год - восьмиразрядный процессор Intel 8008. Создание микропроцессоров послужило основой для разработки персонального компьютера (ПК), ᴛ.ᴇ. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на работу одного пользователя.

1973 ᴦ. фирма Xerox создала первый прототип персонального компьютера.

1974 ᴦ. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800, для которого в конце 1975 ᴦ. Пол Ален и Билл Гейтс написали интерпретатор языка Бэйсик.

В августе 1981 ᴦ. фирма IBM выпустила компьютер IBM PC. В качестве основного микропроцессора использовали новейший тогда 16-разрядный микропроцессор Intel 8088. ПК был построен в соответствии с принципами открытой архитектуры. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами различных производителœей. Через один – два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-разрядных компьютеров.

Сегодня существует множество разновидностей ЭВМ, которые классифицируются: по элементной базе, принципам действия, стоимости, размерам, производительности, назначению и областям применения.

СуперЭВМ и большие ЭВМ (мэйнфреймы) – применяются для проведения сложных научных расчетов или для обработки больших потоков информации на крупных предприятиях. Οʜᴎ, как правило, являются главными компьютерами корпоративных вычислительных сетей.

Мини - и микро ЭВМ применяются для создания систем управления крупных и средних предприятий.

Персональные компьютеры предназначены для конечного пользователя. В свою очередь ПК подразделяют на настольные (desktop), портативные (notebook) и карманные (palmtop) модели.

История развития вычислительной техники - понятие и виды. Классификация и особенности категории "История развития вычислительной техники" 2017, 2018.

  • - История развития вычислительной техники

    Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета. Абак – счётная доска,... .


  • - История развития вычислительной техники

    История развития вычислительной техники уходит своими корнями далеко в прошлое. Еще в XIV в. Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства. Действующий образец построил в 1642 г. знаменитый французский физик, математик и инженер Блез Паскаль. Его... .


  • - КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

    1623г. Первая «считающая машина», созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами. 1644г. «Вычислитель» Блеза Паскаля – первая по настоящему популярная считающая машина,...

  • Глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

    Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка , механический арифмометр, электронный компьютер . Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

    Ранние приспособления и устройства для счёта

    Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы , которые стали, таким образом, одним из первых устройств для количественного определения массы .

    Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

    Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

    С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм , обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

    «Считающие часы» Вильгельма Шиккарда

    За этим последовали машины Блеза Паскаля («Паскалина », 1642 г.) и Готфрида Вильгельма Лейбница .

    ANITA Mark VIII, 1961 год

    В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве .

    Появление аналоговых вычислителей в предвоенные годы

    Основная статья: История аналоговых вычислительных машин

    Дифференциальный анализатор, Кембридж, 1938 год

    Первые электромеханические цифровые компьютеры

    Z-серия Конрада Цузе

    Репродукция компьютера Zuse Z1 в Музее техники, Берлин

    Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 - первый компьютер с памятью на магнитных носителях.

    Британский Colossus

    В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

    Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

    Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

    Применение полупроводников позволило улучшить не только центральный процессор , но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed ) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable ) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

    Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам . Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.

    Рассказать друзьям